PreTRM® Test for Risk Management

Intended Use / Indications for Use

The PreTRM Test for Risk Management predicts the risk of spontaneous preterm birth (before 37 weeks) in asymptomatic women (no signs or symptoms of preterm labor with intact membranes) \geq 18 years old with a singleton pregnancy.^{1,2} The PreTRM Test is performed via a single blood draw between 18wk - 20wk/6d (126-146 days) gestation.³

The PreTRM test is a laboratory-developed test (LDT) and is performed exclusively by Sera Prognostics Clinical Laboratory, Salt Lake City, Utah.³

Analytical Test Method

SAMPLE WORKFLOW

For depletion methodologies,* samples are diluted in buffer, filtered to remove particulates, then depleted of high abundance proteins using an automated antibody-based affinity method. For antibody capture methodologies, samples are enriched for the targeted proteins using affinity capture after having been reconstituted from the sample collection device using a buffer. After these initial steps which differ depending on the test systems used, the rest of the methodology is the same. All samples are then digested with a protease to generate peptides that serve as surrogate analytes for the proteins of interest. Samples are fortified with stable isotope internal standards (SIS). The abundances of diagnostic and quality control proteins from fully processed samples are detected by liquid chromatographymass spectrometry. There are two proteins used to determine the individualized risk of spontaneous preterm birth, insulin-like growth factor-binding protein 4 (IBP4) and sex hormone binding globulin (SHBG).

*samples originating from NY state will be tested using depletion methodologies

DATA ANALYSIS

A proteomic score is calculated using the relative abundances of the two signature analytes, IBP4 and SHBG. The individual risk of spontaneous preterm birth before 37 weeks is reported as a Bayesian posterior probability based on the patient's proteomic score. A proprietary algorithm uses the internal standard-normalized relative abundances of the diagnostic analytes and the patient's pre-pregnancy body mass index (BMI) to generate a qualitative risk prediction.

Process Controls

- Depletion Efficiency
- Digestion Performance
- Proteomic Score-Based Batch Quality Control
- Matrix Verification
- Abundance Measurement Within Validated Measurement Range

LIMITS OF QUANTITATION

The lower and upper limits of quantitation were determined from linearity experiments, in which recombinant IBP4 and SHBG proteins were spiked into blank serum matrix at known nominal concentrations. The upper limit of quantitation was the highest nominal concentration of each analyte that yielded an acceptable correlation (R2) and had a calculated concentration within $\pm 20\%$ of the nominal concentration and had a CV $\leq 20\%$. The lower limit of quantitation met the same criteria but also had a signal-to-background > 5.

Table 1. Linearity test accuracy results for SHBG

Sample	Nominal Concentration (ug/mL)	LCMS03 (% bias)	LCMS04 (% bias)	LCMS05 (% bias)	LCMS06 (% bias)
Cal1	0.97	-2.0	-5.0	-19.0	-19.0
Cal2	1.38	-17.0	-17.0	-19.0	-20.0
Cal3	1.98	-	-19.0	-9.0	1.0
Cal4	2.82	-20.0	-	-16.0	5.0
Cal5	4.04	-16.0	-17.0	-12.0	19.0
Cal6	8.24	-9.0	-19.0	-8.0	6.0
Cal7	16.81	-9.0	-4.0	-9.0	-13.0
Cal8	24.01	-1.0	-1.0	-9.0	-5.0
Cal9	34.30	0.0	-9.0	-6.0	-6.0
Cal10	49.00	-1.0	2.0	3.0	4.0

Values in green were deemed to meet all linearity acceptance criteria for SHBG.

After applying a linear fit across a range of nominal concentrations that yield the best calculated accuracy of the SHBG concentration, a range of nominal concentrations was found that: yielded a good correlation for all instruments; covered the apparent concentration values for QC1 and QC2 (4.2 to 45.4 ug/mL); covered the range of response ratios expected for the intended use patient population; and yielded bias values within ±20%. The difference between the observed and expected response is divided by the expected response to measure bias as a ratio. There was no systematic bias in the accuracy values and accordingly, the assay was deemed to yield acceptable results across all instruments.

DRIED SERUM SAMPLES using Depletion Methodologies with LCMS Analysis

Performance Characteristics

Figure 1. Example correlation plots for IBP4 and SHBG

Table 2. Linearity test accuracy results for IBP4

Values in green were deemed to meet all linearity acceptance criteria for IBP4.

Sample	Concentration (ug/mL)	Instrument 1 (% bias)	Instrument 2 (% bias)	Instrument 3 (% bias)	Instrument 4 (% bias)
Cal1-01	0.05	-	2.0	9.0	-7.0
Cal2-01	0.07	11.0	2.0	-2.0	-20.0
Cal3-01	0.10	-6.0	-7.0	14.0	-11.0
Cal4-01	0.14	-4.0	-12.0	2.0	13.0
Cal5-01	0.20	-1.0	-8.0	5.0	-14.0
Cal6-01	0.41	7.0	-4.0	-8.0	-12.0
Cal7-01	0.84	2.0	2.0	-1.0	-5.0
Cal8-01	1.20	4.0	5.0	1.0	0.0
Cal9-01	1.72	1.0	-9.0	-3.0	2.0
Cal10-01	2.45	-1.0	2.0	6.0	5.0

After applying a linear fit across a range of nominal concentrations that yield the best calculated accuracy of the IBP4 concentration, a range of nominal concentrations was found that: yielded a good correlation for all instruments; covered the apparent concentration values for QC1 and QC2 (0.16 to 0.67 ug/mL); covered the range of response ratios expected for the intended use patient population; and yielded bias values \leq 20%. There was no systematic bias in the accuracy values. Accordingly, the assay was deemed to yield an acceptable linearity for IBP4 across all instruments.

Table 3. Signal to background at lower limit of quantitation

		Instrument 1			Ir	Instrument 2			nstrument 3	;	Instrument 4		
Protein	Sample	Signal	Background	Ratio	Signal	Background	Ratio	Signal	Background	Ratio	Signal	Background	Ratio
SHBG	Cal4	0.1318	0.0007	188.3	0.1230	0.0020	61.5	0.1230	0.0137	9.0	0.1050	0.0110	9.5
IBP4	Cal2	0.5118	0.0125	40.9	0.2510	0.0140	17.9	0.3815	0.0161	23.7	0.2720	0.0140	19.4

Table 4. Imprecision at lower limit of quantitation

Protein	Sample	Concentration (ug/mL)	Instrument 1 (% CV)	Instrument 2 (% CV)	Instrument 3 (% CV)	Instrument 4 (% CV)
SHBG	Cal4	2.5	9.0	14.0	19.0	12.0
IBP4	Cal2	0.1	16.0	19.0	17.0	17.0

Table 5. Linearity test linear fit results for SHBG

All four instruments yielded linear correlation coefficients that met acceptance criteria for SHBG linearity.

Instrument	Correlation Coefficient (R ²)	Pass/Fail (R² > 0.99)
LCMS03	0.9952	PASS
LCMS04	0.9965	PASS
LCMS05	0.999	PASS
LCMS06	0.9996	PASS

Table 6. Linearity test linear fit results for IBP4

All four instruments yielded linear correlation coefficients that met acceptance criteria for IBP4 linearity.

Instrument	Correlation Coefficient (R ²)	Pass/Fail (R² > 0.99)
LCMS03	0.999	PASS
LCMS04	0.9959	PASS
LCMS05	0.9998	PASS
LCMS06	0.9996	PASS

Assay Reportable Range

The lowest and highest reportable individualized risks of spontaneous preterm birth are \leq 7.3% and \geq 60%, respectively. The lower bound is estimated from the United States population baseline rate of spontaneous preterm birth in 20141, contemporaneous with the clinical studies. The upper bound is truncated to the highest score observed in clinical validation studies.

Analytical Specificity/Interference

Interference and specificity were evaluated by spiking a pooled serum sample derived from our intended use population with two levels of Triglyceride Rich Lipoproteins, conjugated and unconjugated bilirubin, and hemolysate at levels considered clinically high and pathological. No significant shift in the results ($p \ge 0.05$) were detected at any level of interference. Additionally, no level of interference shifted the retention time in a way that prevented specific identification of the target analyte or changed its qualitative to quantitative transition ratio significantly.

Precision – Intrabatch (Repeatability)

Intrabatch precision was evaluated by testing samples (N = 21 for each sample type) that represented high, low and threshold test results from our intended use population. These samples were analyzed repeatedly within a day to demonstrate that the assay could yield CVs \leq 20%. Samples were tested for both response ratios and proteomic score, but the score result is used in clinical decision making.

Table 7. Within-batch imprecision (repeatability)of analytes by batch

SAMPLE	Analyte/Score	N	% CV	Pass/Fail
	IBP4	20*	20.0	Pass
Low	SHBG	20*	15.4	Pass
	Score	20*	4.9	Pass
	IBP4	21	6.0	Pass
High	SHBG	21	5.0	Pass
	Score	21	3.7	Pass
	IBP4	21	16.7	Pass
Threshold	SHBG	21	12.2	Pass
	Score	21	9.6	Pass

* One replicate dropped owing to liquid handling issue

The method demonstrated acceptable repeatability.

Precision – Interbatch (Reproducibility)

Interbatch precision was evaluated by testing samples (N = 161 for each sample type) that represented high, low and threshold test results from the intended use population. These samples were analyzed repeatedly across 21 batches spread over more than 20 days across all test systems and personnel, to demonstrate that the assay could yield overall CVs of \leq 20% across that time frame.

Table 8. Interbatch imprecision (reproducibility)of analytes

SAMPLE	Analyte/Score	N	% CV	Pass/Fail
	IBP4	161	15.4	Pass
Low	SHBG	161	15.3	Pass
	Score	161	7.4	Pass
	IBP4	160*	16.9	Pass
High	SHBG	160*	16.8	Pass
	Score	160*	19.9	Pass
	IBP4	160*	19.5	Pass
Threshold	SHBG	160*	16.9	Pass
	Score	160*	10.6	Pass

* One replicate dropped owing to liquid handling issue

The method demonstrated acceptable reproducibility.

Frozen Serum Samples

LIMITS OF QUANTITATION

The lower and upper limits of quantitation (LOQ) were determined by calculating the CVs of diagnostic protein abundances after replicate analysis of samples across a concentration range that encompasses intended use samples, then comparing the CVs to an acceptable upper threshold of \leq 20%.

Table 9. Reverse Response Ratio % CVs Across Concentrations

Average	Revers	e Response Rat	io %CV	Average	Reverse Response Ratio %CV					
Response Ratio	Instrument 1	Instrument 2	Instrument 3	Response Ratio	Instrument 1	Instrument 2	Instrument 3			
0.019	13.21	22.81	25.20	0.011	4.18	3.51	7.88			
0.040	10.64	8.06	18.99	0.031	3.58	3.82	6.05			
0.099	7.67	10.61	17.58	0.093	3.90	4.17	5.67			
0.261	5.94	7.75	11.10	0.290	2.40	3.57	9.23			
0.768	4.85	4.59	9.15	0.889	3.44	4.40	5.05			
2.349	4.90	6.56	8.72	2.769	4.40	3.54	5.34			
6.910	4.39	6.61	10.39	8.660	3.37	1.86	3.70			
20.161	3.65	7.70	8.10	27.147	4.57	3.56	3.89			
64.870	3.88	5.29	7.78	85.917	2.29	2.93	5.24			
209.911	5.21	6.22	8.52	291.267	1.86	2.71	4.43			

Assay Reportable Range

The lowest and highest reportable individualized risk of spontaneous preterm birth are \leq 7.3% and \geq 60%, respectively. The lower bound is estimated from the United States population baseline rate of spontaneous preterm birth in 20141, contemporaneous with the clinical studies. The upper bound is truncated to the highest score observed in clinical validation studies.

Linearity

Reverse calibration curves were generated by dividing the internal standard responses by the responses from a constant signal from endogenous diagnostic analytes. Both diagnostic analytes exhibited a linear response, on multiple detection systems, across a range of diagnostic analyte abundances determined by assaying a large number of samples from an intended use population (indicated by the dashed horizontal lines in the plots below).

Figure 2. Reverse Calibration Curves

Analytical Specificity / Interference

At each peptide's determined retention time, the mass spectrometer was programmed to monitor two parent-product ion mass-to-charge ratio (m/z) transitions for each peptide and the supporting heavy-labeled analogue. The signal ratio of the two transitions (transition ratio) was calculated. Retention time, m/z of parent and product ions, and matching transition ratios between the endogenous peptide analyte and the exogenous heavy-labeled analogue measured in 413 samples over 43 days confirmed that each signal was from the expected endogenous analyte.

A commercially available endogenous interferent panel, at concentrations exceeding those found in clinical specimens, was tested on samples from clinical studies. No significant effect on the proteomic score from these interferents was observed.

Table 10. Inter-batch Precision (Reproducibility)

Acceptance criteria were ≤20% CV across all 21 batches.

Sample	Sample Characteristics	N	SHBG %CV	IBP4 %CV	Mean SHBG	Mean IBP4
15-6018	Low IBP4	84	9.67	11.41	1.103	0.192
15-6036	High IBP4, High SHBG	83	9.73	9.49	1.766	0.323
15-6054	Midrange Proteomic Score	84	11.76	10.05	0.861	0.264
15-6092	Midrange Proteomic Score	83	11.89	9.52	0.882	0.285
15-6138	Midrange Proteomic Score	83	9.00	8.87	0.909	0.310
Precision QC 1	Low SHBG	84	12.71	10.22	0.188	0.253

Table 11. Intra-batch Precision (Repeatability)

	Precis	ion 01	Precision 02		Precision 03		Precision 04		Precision 05		Precision 06		Precision 07	
Sample	SHBG	IBP4	SHBG	IBP4	SHBG	IBP4	SHBG	IBP4	SHBG	IBP4	SHBG	IBP4	SHBG	IBP4
15-6018	4.63	7.89	5.10	5.12	6.62	11.97	6.41	1.90	10.40	7.76	5.20	13.01	3.02	6.43
15-6036	7.26	2.72	1.50	5.22	4.42	9.71	2.56	4.37	9.92	7.04	4.08	7.77	6.77	12.98
15-6054	1.97	5.47	9.20	7.96	8.38	6.79	4.65	9.38	8.54	4.84	4.95	9.84	2.29	9.98
15-6092	5.98	5.73	16.62	7.87	2.16	4.38	3.70	10.94	21.42	10.87	4.25	7.80	4.38	6.69
15-6138	3.83	9.82	8.79	7.96	8.45	6.71	4.96	4.03	9.85	7.59	5.27	3.61	3.19	6.79
Precision QC 1	5.90	4.02	12.52	10.89	7.51	7.64	19.29	19.76	22.16	13.28	9.75	5.79	5.35	2.80

	Precis	cision 08 Precision 09		Precis	Precision 10		Precision 11		Precision 12		Precision 13		ion 14	
Sample	SHBG	IBP4	SHBG	IBP4	SHBG	IBP4	SHBG	IBP4	SHBG	IBP4	SHBG	IBP4	SHBG	IBP4
15-6018	7.04	7.07	8.91	11.09	8.46	5.62	3.35	8.67	9.54	15.52	7.43	8.67	7.71	5.66
15-6036	7.07	4.77	5.69	7.21	6.00	6.29	8.60	6.96	8.85	10.91	4.44	7.06	5.59	8.26
15-6054	8.01	13.61	4.93	8.19	1.63	2.25	6.31	3.47	16.82	14.34	14.37	3.19	7.26	5.30
15-6092	4.07	7.18	6.86	8.35	2.63	11.64	4.82	10.78	7.54	6.27	19.52	9.16	7.61	4.97
15-6138	6.60	10.46	7.20	5.18	2.80	1.77	5.42	5.82	9.90	2.35	3.90	3.37	1.44	3.77
Precision QC 1	10.67	11.29	7.63	9.88	3.71	11.43	2.76	3.77	12.12	5.34	16.91	9.81	7.69	9.09

	Precis	ion 15	Precis	ion 16	Precis	ion 17	Precis	ion 18	Precis	ion 19	Precis	ion 20	Precis	ion 21
Sample	SHBG	IBP4												
15-6018	4.55	8.90	10.53	7.64	1.16	3.42	4.66	10.60	6.32	7.63	11.15	12.88	7.51	4.87
15-6036	4.17	2.15	7.81	12.31	9.18	13.38	10.59	8.18	10.53	4.64	6.70	7.94	4.19	6.84
15-6054	8.66	6.92	3.32	9.85	21.64	11.35	14.90	5.29	3.64	6.81	5.57	4.53	1.89	8.57
15-6092	6.16	6.81	3.56	6.62	4.67	2.41	17.27	5.73	5.00	5.02	5.56	7.86	8.33	9.35
15-6138	10.96	15.13	2.37	2.67	0.98	11.12	14.30	6.38	3.07	10.55	11.96	9.81	5.71	3.53
Precision QC 1	4.86	5.10	2.07	6.93	5.88	7.95	10.00	9.92	3.49	8.59	4.70	10.46	3.36	9.06

Acceptance criteria: Both diagnostic analytes within batch must have CVs < 20% in 20 of 21 batches (95% agreement). (Two data points were dropped for sampling handling error; one was dropped for a trypsin digestion error.)

LIMITS OF QUANTITATION

The lower and upper limits of quantitation were determined from linearity experiments, in which recombinant IBP4 and SHBG proteins were spiked into blank serum matrix at known nominal concentrations. The upper limit of quantitation was the highest nominal concentration of each analyte that yielded an acceptable correlation (R2) and had a calculated concentration within 20% of the nominal concentration and had a CV \leq 20%. The lower limit of quantitation met the same criteria but also had a signal-to-background > 5.

Table 1. Linearity test accuracy results for SHBG

Values in green were deemed to meet all linearity acceptance criteria for SHBG. LCMS06 did not reach acceptable linearity criteria up to the nominal concentration of 50 ug/mL needed to cover QC ranges and expected patient results.

Sample	Nominal Concentration (ug/mL)	Lowest Observed RR *LLOQ	Highest Observed RR **ULOQ	INST 1 Day1 (% bias)	INST 2 Day1 (% bias)	INST 1 Day2 (% bias)	INST 2 Day2 (% bias)	INST 1 Day3 (% bias)	INST 2 Day3 (% bias)
Cal2	1.38	0.08*	0.12	17.0	7.0	-6.0	12.0	19.1	18.0
Cal3	1.98	0.12	0.16	18.0	11.0	12.0	-	17.4	12.9
Cal4	2.82	0.18	0.28	2.0	0.0	-4.0	5.0	-4.4	-1.9
Cal5	4.04	0.30	0.37	7.0	4.0	-1.0	5.0	-6.7	-4.6
Cal6	5.76	0.44	0.66	-3.0	-4.0	-7.0	-5.0	-1.9	-2.2
Cal7	8.24	0.65	0.83	3.0	3.0	2.0	4.0	-2.9	-1.8
Cal8	11.76	0.84	1.29	0.0	1.0	3.0	4.0	-2.3	-2.4
Cal9	16.81	1.29	1.60	8.0	8.0	-3.0	-1.0	0.1	1.2
Cal10	24.01	1.67	2.66	3.0	3.0	10.0	9.0	0.3	-4.1
Cal11	34.30	3.10	4.09	-20.0	-18.0	-15.0	-16.0	2.4	5.4
Cal12	49.00	3.70	4.91**	4.0	4.0	10.0	8.0	-1.0	-1.6

Linearity Test Calculated vs. Nominal Concentration Results for SHBG

After applying a linear fit across a range of nominal concentrations that yield the best calculated accuracy of the SHBG concentration, a range of nominal concentrations was found that: yielded a good correlation for all instruments used in validation; covered the apparent concentration values for QC1 and QC2 (4.2 to 45.4 ug/mL); covered the range of response ratios expected for the intended use patient population; and yielded bias values within ±20. The difference between the observed and expected response is divided by the expected response to measure bias as a ratio. There was no systematic bias in the accuracy values and accordingly, the assay was deemed to yield acceptable results across all instruments.

Figure 1. Example correlation plots for IBP4 and SHBG

Table 2. Linearity test accuracy results for IBP4

Values in green were deemed to meet all linearity acceptance criteria for IBP4.

Sample	Nominal Concentration (ug/mL)	Lowest Observed RR *LLOQ	Highest Observed RR **ULOQ	INST 1 Day1 (% bias)	INST 2 Day1 (% bias)	INST 1 Day2 (% bias)	INST 2 Day2 (% bias)	INST 1 Day3 (% bias)	INST 2 Day3 (% bias)
Cal2	0.07	0.05*	0.15	11.4	2.8	18.4	16.5	16.5	12.2
Cal3	0.10	0.08	0.19	15.4	11.0	19.5		18.8	6.3
Cal4	0.14	0.11	0.27	1.1	-1.3	7.7	9.0	-8.0	-0.8
Cal5	0.20	0.20	0.34	3.0	5.5	3.6	6.6	-9.9	-2.1
Cal6	0.29	0.29	0.48	-3.1	-2.7	-5.8	-5.0	-6.0	-0.5
Cal7	0.41	0.43	0.62	5.0	3.7	0.3	2.4	3.5	-2.3
Cal8	0.59	0.53	0.93	0.7	1.6	2.5	3.3	-4.4	0.4
Cal9	0.84	0.86	1.23	7.1	6.9	-2.8	-2.6	2.3	-1.1
Cal10	1.20	1.08	1.80	2.4	3.7	8.8	7.4	0.2	-3.6
Cal11	1.72	1.86	2.80	-16.9	-18.1			1.6	5.1
Cal12	2.45	2.38	3.39**	5.5	7.2	6.7	7.8	-0.8	-1.5

Linearity '	Test Calculat	ed vs. Nomi	nal Concentrat	ion Results for IBP4
Lincurrey	rost curculat		nur concentrat	ton neodito tor ibi

After applying a linear fit across a range of nominal concentrations that yield the best calculated accuracy of the IBP4 concentration, a range of nominal concentrations was found that: yielded a good correlation for all instruments; covered the apparent concentration values for QC1 and QC2 (0.16 to 0.67 ug/mL); covered the range of response ratios expected for the intended use patient population; and yielded bias values within ±20%. The difference between the observed and expected response is divided by the expected response to measure bias as a ratio. There was no systematic bias in the accuracy values and accordingly, the assay was deemed to yield acceptable results across all instruments.

Table 3. Signal to background at lower limit of quantitation

		Instrument 1		Instrument 2			
Sample	Average Signal (RR)	Background (UTAK Blank Serum)	Ratio	Average Signal (RR)	Background (UTAK Blank Serum)	Ratio	
Cal2	0.0934	0.001	93.4	0.107	0.001	107.1	
Cal2	0.1306	0.001	130.6	0.1253	0.001	125.3	

The ratio obtained by dividing the signal obtained at the LLOQ by the background signal was found to be \geq 5 times the analyte response at the zero calibrator. Accordingly, the assay was deemed to yield acceptable results across all instruments.

Table 4. Imprecision at lower limit of quantitation

Protein	Sample	Concentration (ug/mL)	INST 1 Day 1 (% CV)	INST 2 Day 1 (% CV)	INST 1 Day 2 (% CV)	INST 2 Day 2 (% CV)	INST 1 Day 3 (% CV)	INST 2 Day 3 (% CV)
IBP4	Cal2	0.07	11%	3%	18%	17%	17%	12%
SHBG	Cal2	1.38	17%	7%	6%	12%	19%	18%

Table 5. Linearity test linear fit results for SHBG

Both instruments yielded linear correlation coefficients that met acceptance criteria for SHBG linearity.

Instrument	Correlation Coefficient (R ²)	Pass/Fail (R² > 0.99)
LCMS03	0.9947	PASS
LCMS04	0.9942	PASS

Table 6. Linearity test linear fit results for IBP4

Both instruments yielded linear correlation coefficients that met acceptance criteria for IBP4 linearity.

Instrument	Correlation Coefficient (R ²)	Pass/Fail (R² > 0.99)
LCMS03	0.9981	PASS
LCMS04	0.9982	PASS

Assay Reportable Range

The lowest and highest reportable individualized risks of spontaneous preterm birth are \leq 7.3% and \geq 60%, respectively. The lower bound is estimated from the United States population baseline rate of spontaneous preterm birth in 20141, contemporaneous with the clinical studies. The upper bound is truncated to the highest score observed in clinical validation studies.

Analytical Specificity/Interference

Interference and specificity were evaluated by spiking a pooled serum sample derived from our intended use population ith two levels of Triglyceride Rich Lipoproteins, conjugated and unconjugated bilirubin, and hemolysate at levels considered clinically high and pathological. No significant shift in the results ($p \ge 0.05$) was detected at any level of interference. Additionally, no level of interference shifted the retention time in a way that prevented specific identification of the target analyte or changed its qualitative to quantitative transition ratio significantly.

Precision – Intrabatch (Repeatability)

Intrabatch precision was evaluated by testing samples (N = 28 for each sample type) that represented high, low and threshold test results from our intended use population. These samples were analyzed repeatedly within a day to demonstrate that the assay could yield CVs \leq 20%. Samples were tested for both response ratios and proteomic score, but the score result is used in clinical decision making.

Table 7. Within-batch imprecision (repeatability)of analytes by batch

SAMPLE	Analyte/Score	N	% CV	Pass/Fail
	IBP4	28	1.1	Pass
High	SHBG	28	1.5	Pass
	Score	28	1.5	Pass
	IBP4	28	2.4	Pass
Low	SHBG	28	1.1	Pass
	Score	28	1.1	Pass
	IBP4	28	2.5	Pass
Threshold	SHBG	28	1.2	Pass
	Score	28	1.5	Pass

The method demonstrated acceptable repeatability.

Precision – Interbatch (Reproducibility)

Interbatch precision was evaluated by testing samples (N = 294 for each sample type) that represented high, low and threshold test results from the intended use population. These samples were analyzed repeatedly across 21 batches spread over more than 20 days across all test systems and personnel, to demonstrate that the assay could yield overall CVs of \leq 20% across that time frame.

Table 8. Interbatch imprecision (reproducibility)of analytes

SAMPLE	Analyte/Score	N	% CV	Pass/Fail
	IBP4	294	9.2	Pass
High	SHBG	294	6.5	Pass
	Score	294	7.7	Pass
	IBP4	294	8.4	Pass
Low	SHBG	294	6.4	Pass
	Score	294	3.3	Pass
	IBP4	294	13.5	Pass
Threshold	SHBG	294	4.5	Pass
	Score	294	3.3	Pass

The method demonstrated acceptable reproducibility.

LIMITS OF QUANTITATION

The lower and upper limits of quantitation were determined from linearity experiments, in which recombinant IBP4 and SHBG proteins were spiked into blank whole blood matrix at known nominal concentrations. The upper limit of quantitation was the highest nominal concentration of each analyte that yielded an acceptable correlation (R2) and had a calculated concentration within $\pm 20\%$ of the nominal concentration and had a CV $\leq 20\%$. The lower limit of quantitation met the same criteria but also had a signal-to-background > 5.

Table 1. Linearity test accuracy results for SHBG

Sample	Nominal Concentration (ug/mL)	Lowest Observed RR *LLOQ	Highest Observed RR **ULOQ	INST 1 Day1 (% bias)	INST 2 Day1 (% bias)	INST 1 Day2 (% bias)	INST 2 Day2 (% bias)	INST 1 Day3 (% bias)	INST 2 Day3 (% bias)
Cal2	0.69	0.086*	0.137	-19.4	-18.5	-17.1	-13.4	-4.7	-19.8
Cal3	0.99	0.122	0.188	-10.9	-11.4	-10.5	-15.7	4.9	-9.0
Cal4	1.41	0.164	0.256	-8.1	-9.1	3.8	7.0	2.6	-4.6
Cal5	2.02	0.237	0.384	-3.4	-6.6	-6.9	-6.2	6.7	0.9
Cal6	2.88	0.319	0.574	-1.6	-3.0	-9.0	-8.8	6.3	3.2
Cal7	4.12	0.542	0.772	-0.3	-4.1	-0.2	0.1	-4.0	-5.4
Cal8	5.88	0.762	1.082	0.4	1.0	-0.8	0.2	-2.1	-2.8
Cal9	8.40	1.095	1.565	-0.7	-0.2	3.1	4.0	-2.3	-0.3
Cal10	12.01	1.321	2.277	1.9	2.2	1.1	0.6	0.3	2.7
Cal11	17.15	2.047	3.355	4.7	6.2	2.9	2.0	5.0	6.4
Cal12	24.50	3.200	4.700	-1.7	-0.8	0.6	0.0	-3.3	-3.2
Cal13	35.00	4.592	6.405**	0.1	-1.0	-1.2	-0.7	-0.9	-0.2

Values in green were deemed to meet all linearity acceptance criteria for SHBG.

After applying a linear fit across a range of nominal concentrations that yield the best calculated accuracy of the SHBG concentration, a range of nominal concentrations was found that: yielded a good correlation for all instruments used in validation; covered the apparent concentration values for QC1 and QC2 (0.05 to 20.0 ug/mL); covered the range of response ratios expected for the intended use patient population; and yielded bias values within ±20%. There was no systematic bias in the accuracy values and accordingly, the assay was deemed to yield acceptable results across all instruments.

DRIED WHOLE BLOOD SAMPLES using Antibody Capture Methodologies with LCMS Analysis

50.0

60.0

Performance Characteristics

Figure 1. Example correlation plots for IBP4 and SHBG

Table 2. Linearity test accuracy results for IBP4

Values in green were deemed to meet all linearity acceptance criteria for IBP4.

Sample	Concentration (ug/mL)	Lowest Observed RR *LLOQ	Highest Observed RR **ULOQ	INST 1 Day 1 (% bias)	INST 2 Day 1 (% bias)	INST 1 Day 2 (% bias)	INST 2 Day 2 (% bias)	INST 1 Day 3 (% bias)	INST 2 Day 3 (% bias)
Cal1	0.02	0.200*	0.308	-16.4	-15.6	-14.2	-19.8	-3.4	-11.0
Cal2	0.03	0.224	0.323	-12.2	-17.3	-2.5	-19.3	-19.7	-15.2
Cal3	0.05	0.246	0.351	0.6	-11.7	-7.7	-5.9	11.6	-5.5
Cal4	0.07	0.289	0.447	-5.7	-10.6	16.3	6.7	3.0	-13.8
Cal5	0.10	0.361	0.518	-2.3	-4.4	0.8	-10.0	4.7	8.2
Cal6	0.14	0.421	0.679	1.5	-1.9	-8.7	-12.9	4.6	3.7
Cal7	0.21	0.584	0.788	-2.6	0.2	-0.5	-1.2	-4.6	-4.1
Cal8	0.29	0.751	1.062	1.1	5.3	0.3	-0.3	-2.3	-4.5
Cal9	0.42	1.087	1.393	0.9	-0.6	3.9	5.3	-0.4	-0.6
Cal10	0.60	1.222	2.083	0.6	0.6	-0.4	1.4	0.7	3.6
Cal11	0.86	1.836	2.921	3.6	5.8	-0.1	2.5	4.5	5.8
Cal12	1.23	2.922	3.838	-1.9	-2.7	-0.7	1.5	-3.4	-3.9
Cal13	1.75	3.870	5.431**	0.0	-0.2	0.3	-1.7	-0.4	0.7

After applying a linear fit across a range of nominal concentrations that yield the best calculated accuracy of the IBP4 concentration, a range of nominal concentrations was found that: yielded a good correlation for all instruments; covered the apparent concentration values for QC1 and QC2 (0.16 to 0.67 ug/mL); covered the range of response ratios expected for the intended use patient population; and yielded bias values $\leq 20\%$. There was no systematic bias in the accuracy values. Accordingly, the assay was deemed to yield an acceptable linearity for IBP4 across all instruments.

Table 3. Signal to background ratio at lower limit of quantitation

Protein	Sample	Instrument 1			Instrument 2		
		Average Signal (RR)	Background (UTAK Blank Serum)	Ratio	Average Signal (RR)	Background (UTAK Blank Serum)	Ratio
SHBG	Cal2	0.106	0.001	106	0.100	0.001	100
IBP4	Cal1	0.245	0.001	245	0.232	0.001	232

The ratio obtained by dividing the signal obtained at the LLOQ by the background signal was found to be \geq 5 times the analyte response at the zero calibrator. Accordingly, the assay was deemed to yield acceptable results across all instruments.

Table 4. Imprecision at lower limit of quantitation

Protein	Sample	Concentration (ug/mL)	INST 1 Day 1 (% CV)	INST 2 Day 1 (% CV)	INST 1 Day 2 (% CV)	INST 2 Day 2 (% CV)	INST 1 Day 3 (% CV)	INST 2 Day 3 (% CV)
SHBG	Cal2	0.69	5%	7%	9%	9%	5%	7%
IBP4	Cal1	0.02	5%	4%	10%	10%	8%	4%

Table 5. Linearity test linear fit results for SHBG

Both instruments yielded linear correlation coefficients that met acceptance criteria for SHBG linearity.

Instrument	Correlation Coefficient (R ²)	Pass/Fail (R² > 0.99)	
Instrument 1	0.9997	PASS	
Instrument 2	0.9995	PASS	

Table 6. Linearity test linear fit results for IBP4

Both instruments yielded linear correlation coefficients that met acceptance criteria for IBP4 linearity.

Instrument	Correlation Coefficient (R ²)	Pass/Fail (R² > 0.99)	
Instrument 1	0.9995	PASS	
Instrument 2	0.9988	PASS	

Assay Reportable Range

The lowest and highest reportable individualized risks of spontaneous preterm birth are \leq 7.3% and \geq 60%, respectively. The lower bound is estimated from the United States population baseline rate of spontaneous preterm birth in 20141, contemporaneous with the clinical studies. The upper bound is truncated to the highest score observed in clinical validation studies.

Analytical Specificity/Interference

Interference and specificity were evaluated by spiking a pooled serum sample derived from our intended use population with two levels of Triglyceride Rich Lipoproteins, conjugated and unconjugated bilirubin, and hemolysate at levels considered clinically high and pathological. No significant shift in the results ($p \ge 0.05$) was detected at any level of interference. Additionally, no level of interference shifted the retention time in a way that prevented specific identification of the target analyte or changed its qualitative to quantitative transition ratio significantly.

Precision – Intrabatch (Repeatability)

Intrabatch precision was evaluated by testing samples (N = 32 for each sample type) that represented high, low and threshold test results from our intended use population. These samples were analyzed repeatedly within a day to demonstrate that the assay could yield CVs \leq 20%. Samples were tested for both response ratios and proteomic score, but the score result is used in clinical decision making.

Table 7. Within-batch imprecision (repeatability)of analytes by batch

SAMPLE	Analyte/Score	N	% CV	Pass/Fail
	IBP4	31*	1.3	Pass
High	SHBG	31*	0.9	Pass
	Score	31*	4.2	Pass
	IBP4	32	4.4	Pass
Low	SHBG	32	3.3	Pass
	Score	32	4.0	Pass
	IBP4	32	9.0	Pass
Threshold	SHBG	32	1.7	Pass
	Score	32	3.3	Pass

* One replicate dropped owing to liquid handling issue

The method demonstrated acceptable repeatability.

Precision – Interbatch (Reproducibility)

Interbatch precision was evaluated by testing samples (N = 294 for each sample type) that represented high, low and threshold test results from the intended use population. These samples were analyzed repeatedly across 21 batches spread over more than 20 days across all test systems and personnel, to demonstrate that the assay could yield overall CVs of \leq 20% across that time frame.

Table 8. Interbatch imprecision (reproducibility)of analytes

SAMPLE	Analyte/Score	N	% CV	Pass/Fail
	IBP4	95*	5.3	Pass
High	SHBG	95*	4.8	Pass
	Score	95*	5.5	Pass
	IBP4	96	6.0	Pass
Low	SHBG	96	5.1	Pass
	Score	96	5.1	Pass
	IBP4	96	5.3	Pass
Threshold	SHBG	96	2.1	Pass
	Score	96	1.2	Pass

* One replicate dropped owing to liquid handling issue

The method demonstrated acceptable reproducibility.

REFERENCES: 1. Martin JA, Hamilton B, et al. Births: Final Data for 2012. National Vital Statistics Report. Centers for Disease Control and Prevention. 2013;62:9. 2. Saade GR, Boggess KA, Sullivan SL et al. Development and validation of a spontaneous preterm delivery predictor in asymptomatic women. An J Obstet Gynecol May 2016;214(5):633.e1-24. 3. Bradford C, Severinsen R, Pugmire T, Rasmussen M, Stoddard K, Uemura Y, Wheelwright S, Mentinova M, Chelsky D, Hunsucker SW, Kearney P, Hickok D, Fleischer TC, Ichetovkin I, Boniface JJ, Critchfield GC, Peltier JM: Analytical validation of protein biomarkers for risk of spontaneous preterm birth.

